MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Saint Petersburg Mathematical Olympiad
2009 Saint Petersburg Mathematical Olympiad
7
Special sequence
Special sequence
Source: St Peterburg Olympiad 2009, Grade 11, P7
August 30, 2017
algebra
Problem Statement
f
(
x
)
=
x
2
+
x
f(x)=x^2+x
f
(
x
)
=
x
2
+
x
b
1
,
.
.
.
,
b
10000
>
0
b_1,...,b_{10000}>0
b
1
,
...
,
b
10000
>
0
and
∣
b
n
+
1
−
f
(
b
n
)
∣
≤
1
1000
|b_{n+1}-f(b_n)|\leq \frac{1}{1000}
∣
b
n
+
1
−
f
(
b
n
)
∣
≤
1000
1
for
n
=
1
,
.
.
.
,
9999
n=1,...,9999
n
=
1
,
...
,
9999
Prove, that there is such
a
1
>
0
a_1>0
a
1
>
0
that
a
n
+
1
=
f
(
a
n
)
;
n
=
1
,
.
.
.
,
9999
a_{n+1}=f(a_n);n=1,...,9999
a
n
+
1
=
f
(
a
n
)
;
n
=
1
,
...
,
9999
and
∣
a
n
−
b
n
∣
<
1
100
|a_n-b_n|<\frac{1}{100}
∣
a
n
−
b
n
∣
<
100
1
Back to Problems
View on AoPS