MathDB
Special sequence

Source: St Peterburg Olympiad 2009, Grade 11, P7

August 30, 2017
algebra

Problem Statement

f(x)=x2+xf(x)=x^2+x b1,...,b10000>0b_1,...,b_{10000}>0 and bn+1f(bn)11000|b_{n+1}-f(b_n)|\leq \frac{1}{1000} for n=1,...,9999n=1,...,9999 Prove, that there is such a1>0a_1>0 that an+1=f(an);n=1,...,9999a_{n+1}=f(a_n);n=1,...,9999 and anbn<1100|a_n-b_n|<\frac{1}{100}