MathDB
Find minimum value and maximum value of f(x,y,z)

Source:

September 18, 2010
inequalitiesinequalities proposed

Problem Statement

Let x,y,z0x,y,z\geq0 be real numbers such that x+y+z=1x+y+z=1 Define f(x,y,z)f(x,y,z) in this way : f(x,y,z)=x(2yz)1+x+3y+y(2zx)1+y+3z+z(2xy)1+z+3xf(x,y,z)=\frac{x(2y-z)}{1+x+3y}+\frac{y(2z-x)}{1+y+3z}+\frac{z(2x-y)}{1+z+3x} Find the minimum value and maximum value of f(x,y,z)f(x,y,z) .