MathDB
Sum 1/x = 1

Source: APMO 2002

April 8, 2006
inequalities

Problem Statement

Let x,y,zx,y,z be positive numbers such that 1x+1y+1z=1. {1\over x}+{1\over y}+{1\over z}=1. Show that x+yz+y+zx+z+xyxyz+x+y+z \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}