MathDB
Putnam 2019 B3

Source:

December 10, 2019
Putnamlinear algebramatrixvectorPutnam 2019

Problem Statement

Let QQ be an nn-by-nn real orthogonal matrix, and let uRnu\in \mathbb{R}^n be a unit column vector (that is, uTu=1u^Tu=1). Let P=I2uuTP=I-2uu^T, where II is the nn-by-nn identity matrix. Show that if 11 is not an eigenvalue of QQ, then 11 is an eigenvalue of PQPQ.