MathDB
AGMC 2021 Prelim Q5

Source:

January 10, 2023
calculuscomplex analysisOdedifferential equation

Problem Statement

For the complex-valued function f(x)f(x) which is continuous and absolutely integrable on R\mathbb{R}, define the function (Sf)(x)(Sf)(x) on R\mathbb{R}: (Sf)(x)=+e2πiuxf(u)du(Sf)(x)=\int_{-\infty}^{+\infty}e^{2\pi iux}f(u)du. (a) Find the expression for S(11+x2)S(\frac{1}{1+x^2}) and S(1(1+x2)2)S(\frac{1}{(1+x^2)^2}). (b) For any integer kk, let fk(x)=(1+x2)1kf_k(x)=(1+x^2)^{-1-k}. Assume k1k\geq 1, find constant c1c_1, c2c_2 such that the function y=(Sfk)(x)y=(Sf_k)(x) satisfies the ODE with second order: xy+c1y+c2xy=0xy''+c_1y'+c_2xy=0.