MathDB
Problems
Contests
Undergraduate contests
Vojtěch Jarník IMC
2012 VJIMC
Problem 2
eigenvalues of tridiagonal matrix
eigenvalues of tridiagonal matrix
Source: VJIMC 2012 2.2
May 31, 2021
matrix
linear algebra
Problem Statement
Let
M
M
M
be the (tridiagonal)
10
×
10
10\times10
10
×
10
matrix
M
=
(
−
1
3
0
⋯
⋯
⋯
0
3
2
−
1
0
⋮
0
−
1
2
−
1
⋱
⋮
⋮
0
−
1
2
⋱
0
⋮
⋮
⋱
⋱
⋱
−
1
0
⋮
0
−
1
2
−
1
0
⋯
⋯
⋯
0
−
1
2
)
M=\begin{pmatrix}-1&3&0&\cdots&\cdots&\cdots&0\\3&2&-1&0&&&\vdots\\0&-1&2&-1&\ddots&&\vdots\\\vdots&0&-1&2&\ddots&0&\vdots\\\vdots&&\ddots&\ddots&\ddots&-1&0\\\vdots&&&0&-1&2&-1\\0&\cdots&\cdots&\cdots&0&-1&2\end{pmatrix}
M
=
−
1
3
0
⋮
⋮
⋮
0
3
2
−
1
0
⋯
0
−
1
2
−
1
⋱
⋯
⋯
0
−
1
2
⋱
0
⋯
⋯
⋱
⋱
⋱
−
1
0
⋯
0
−
1
2
−
1
0
⋮
⋮
⋮
0
−
1
2
Show that
M
M
M
has exactly nine positive real eigenvalues (counted with multiplicities).
Back to Problems
View on AoPS