MathDB
Denote phi(n)=n/k , k is the greatest square with k|n

Source: Iran Third Round 1996, E2, P4

March 27, 2011
number theoryprime numbersnumber theory proposedcombinatorics

Problem Statement

Let nn be a positive integer and suppose that ϕ(n)=nk\phi(n)=\frac{n}{k}, where kk is the greatest perfect square such that knk \mid n. Let a1,a2,,ana_1,a_2,\ldots,a_n be nn positive integers such that ai=p1a1ip2a2ipnania_i=p_1^{a_1i} \cdot p_2^{a_2i} \cdots p_n^{a_ni}, where pip_i are prime numbers and ajia_{ji} are non-negative integers, 1in,1jn1 \leq i \leq n, 1 \leq j \leq n. We know that piϕ(ai)p_i\mid \phi(a_i), and if piϕ(aj)p_i\mid \phi(a_j), then pjϕ(ai)p_j\mid \phi(a_i). Prove that there exist integers k1,k2,,kmk_1,k_2,\ldots,k_m with 1k1k2kmn1 \leq k_1 \leq k_2 \leq \cdots \leq k_m \leq n such that ϕ(ak1ak2akm)=p1p2pn.\phi(a_{k_{1}} \cdot a_{k_{2}} \cdots a_{k_{m}})=p_1 \cdot p_2 \cdots p_n.