MathDB
Problems
Contests
Undergraduate contests
IMC
2010 IMC
1
IMC 2010 - Problem 1
IMC 2010 - Problem 1
Source:
July 26, 2010
integration
real analysis
real analysis unsolved
Problem Statement
Let
0
<
a
<
b
0 < a < b
0
<
a
<
b
. Prove that
∫
a
b
(
x
2
+
1
)
e
−
x
2
d
x
≥
e
−
a
2
−
e
−
b
2
\int_a^b (x^2+1)e^{-x^2} dx \geq e^{-a^2} - e^{-b^2}
∫
a
b
(
x
2
+
1
)
e
−
x
2
d
x
≥
e
−
a
2
−
e
−
b
2
.
Back to Problems
View on AoPS