MathDB
I 14

Source:

May 25, 2007

Problem Statement

Let a,b,na, b, n be positive integers with gcd(a,b)=1\gcd(a, b)=1. Prove that k{ak+bn}=n12,\sum_{k}\left\{ \frac{ak+b}{n}\right\}=\frac{n-1}{2}, where kk runs through a complete system of residues modulo mm.