MathDB
IMC 2013/1/4

Source: Imc 2013 Problem 4

August 8, 2013
inequalitiesfunctionIMCcollege contests

Problem Statement

Let n3\displaystyle{n \geqslant 3} and let x1,x2,...,xn\displaystyle{{x_1},{x_2},...,{x_n}} be nonnegative real numbers. Define A=i=1nxi,B=i=1nxi2,C=i=1nxi3\displaystyle{A = \sum\limits_{i = 1}^n {{x_i}} ,B = \sum\limits_{i = 1}^n {x_i^2} ,C = \sum\limits_{i = 1}^n {x_i^3} }. Prove that: (n+1)A2B+(n2)B2A4+(2n2)AC.\displaystyle{\left( {n + 1} \right){A^2}B + \left( {n - 2} \right){B^2} \geqslant {A^4} + \left( {2n - 2} \right)AC}.
Proposed by Géza Kós, Eötvös University, Budapest.