MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Saint Petersburg Mathematical Olympiad
2012 Saint Petersburg Mathematical Olympiad
4
Sequences
Sequences
Source: St Petersburg Olympiad 2012, Grade 11, P4
September 29, 2017
algebra
Problem Statement
x
1
,
.
.
.
,
x
n
x_1,...,x_n
x
1
,
...
,
x
n
are reals and
x
1
2
+
.
.
.
+
x
n
2
=
1
x_1^2+...+x_n^2=1
x
1
2
+
...
+
x
n
2
=
1
Prove, that exists such
y
1
,
.
.
.
,
y
n
y_1,...,y_n
y
1
,
...
,
y
n
and
z
1
,
.
.
.
,
z
n
z_1,...,z_n
z
1
,
...
,
z
n
such that
∣
y
1
∣
+
.
.
.
+
∣
y
n
∣
≤
1
|y_1|+...+|y_n| \leq 1
∣
y
1
∣
+
...
+
∣
y
n
∣
≤
1
;
m
a
x
(
∣
z
1
∣
,
.
.
.
,
∣
z
n
∣
)
≤
1
max(|z_1|,...,|z_n|) \leq 1
ma
x
(
∣
z
1
∣
,
...
,
∣
z
n
∣
)
≤
1
and
2
x
i
=
y
i
+
z
i
2x_i=y_i+z_i
2
x
i
=
y
i
+
z
i
for every
i
i
i
Back to Problems
View on AoPS