MathDB
Polish MO 2007 Second Round Day 2, problem 3

Source:

February 28, 2007

Problem Statement

aa, bb, cc, dd are positive real numbers satisfying the following condition: 1a+1b+1c+1d=4\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=4 Prove that: a3+b323+b3+c323+c3+d323+d3+a3232(a+b+c+d)4\sqrt[3]{\frac{a^{3}+b^{3}}{2}}+\sqrt[3]{\frac{b^{3}+c^{3}}{2}}+\sqrt[3]{\frac{c^{3}+d^{3}}{2}}+\sqrt[3]{\frac{d^{3}+a^{3}}{2}}\leq 2(a+b+c+d)-4