MathDB
9th XMO 2022 P1: On bounding the product of Sum and Harmonic

Source: 9th XMO 2022

June 18, 2022
algebrainequalitiesChina

Problem Statement

For any nn consecutive integers a1,,ana_1, \cdots, a_n, prove that (a1++an)(1a1++1an)n(n+1)ln(en)2.(a_1+\cdots+a_n)\cdot\left(\frac{1}{a_1}+\cdots+\frac{1}{a_n}\right)\leqslant \frac{n(n+1)\ln(\text{e}n)}{2}.