MathDB
An Average on Permutations

Source: 239 2017 J1

May 31, 2020
combinatoricspermutations

Problem Statement

Denote every permutation of 1,2,,n1,2,\dots, n as σ=(a1,a2,,n)\sigma =(a_1,a_2,\dots,n). Prove that the sum 1(a1)(a1+a2)(a1+a2+a3)(a1+a2++an)\sum \frac{1}{(a_1)(a_1+a_2)(a_1+a_2+a_3)\dots(a_1+a_2+\dots+a_n)} taken over all possible permutations σ\sigma equals 1n!\frac{1}{n!}.