MathDB
Inequality back to business again!

Source: Tuymaada 2021 Senior P3

July 28, 2021
inequalitiesalgebra

Problem Statement

Positive real numbers a1,,ak,b1,,bka_1, \dots, a_k, b_1, \dots, b_k are given. Let A=i=1kai,B=i=1kbiA = \sum_{i = 1}^k a_i, B = \sum_{i = 1}^k b_i. Prove the inequality (i=1kaibiaiB+biA1)2i=1kai2aiB+biAi=1kbi2aiB+biA. \left( \sum_{i = 1}^k \frac{a_i b_i}{a_i B + b_i A} - 1 \right)^2 \ge \sum_{i = 1}^k \frac{a_i^2}{a_i B + b_i A} \cdot \sum_{i = 1}^k \frac{b_i^2}{a_i B + b_i A}.