MathDB
JBMO 2012 Problem 1

Source: JBMO 2012

June 27, 2012
inequalitiesfunctionJBMO

Problem Statement

Let a,b,ca,b,c be positive real numbers such that a+b+c=1a+b+c=1. Prove that ab+ac+cb+ca+bc+ba+622(1aa+1bb+1cc).\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ). When does equality hold?