MathDB
iran inquality

Source: Iranian third round 2015 algebra problem 6

September 8, 2015
inequalitiesalgebra

Problem Statement

a1,a2,,an>0a_1,a_2,\dots ,a_n>0 are positive real numbers such that i=1n1ai=n\sum_{i=1}^{n} \frac{1}{a_i}=n prove that: i<j(aiajai+aj)2n22(1ni=1nai)\sum_{i<j} \left(\frac{a_i-a_j}{a_i+a_j}\right)^2\le\frac{n^2}{2}\left(1-\frac{n}{\sum_{i=1}^{n}a_i}\right)