MathDB
Perfect square under odd conditions

Source: Czech and Slovak Olympiad 2018, National Round, Problem 4

April 5, 2018
number theorynational olympiad

Problem Statement

Let a,b,ca,b,c be integers which are lengths of sides of a triangle, gcd(a,b,c)=1\gcd(a,b,c)=1 and all the values \frac{a^2+b^2-c^2}{a+b-c}, \frac{b^2+c^2-a^2}{b+c-a}, \frac{c^2+a^2-b^2}{c+a-b} are integers as well. Show that (a+bc)(b+ca)(c+ab)(a+b-c)(b+c-a)(c+a-b) or 2(a+bc)(b+ca)(c+ab)2(a+b-c)(b+c-a)(c+a-b) is a perfect square.