MathDB
Putnam 1965 B4

Source:

September 28, 2020
Putnam

Problem Statement

Consider the function f(x,n)=(n0)+(n2)x+(n4)x2+(n1)+(n3)x+(n5)x2+, f(x,n) = \frac{\binom n0 + \binom n2 x + \binom n4x^2 + \cdots}{\binom n1 + \binom n3 x + \binom n5 x^2 + \cdots}, where nn is a positive integer. Express f(x,n+1)f(x,n+1) rationally in terms of f(x,n)f(x,n) and xx. Hence, or otherwise, evaluate limnf(x,n)\textstyle\lim_{n\to\infty}f(x,n) for suitable fixed values of xx. (The symbols (nr)\textstyle\binom nr represent the binomial coefficients.)