MathDB
Prove that x_i is either 0 or 1

Source:

October 12, 2010
algebrapolynomialnumber theory unsolvednumber theory

Problem Statement

Let n>1n > 1 and xiRx_i \in \mathbb{R} for i=1,,ni = 1,\cdots, n. Set Sk=x1k+x2k++xnkS_k = x_1^k+ x^k_2+\cdots+ x^k_n for k1k \ge 1. If S1=S2==Sn+1S_1 = S_2 =\cdots= S_{n+1}, show that xi{0,1}x_i \in \{0, 1\} for every i=1,2,,n.i = 1, 2,\cdots, n.