MathDB
P interior of ABC with <PAB=<PBC =<PCA

Source: Polish MO Second Round 1950 p4

September 1, 2024
geometrytrigonometryequal angles

Problem Statement

Inside the triangle ABCABC there is a point PP such that PAB=PBC=PCA=ϕ.\angle PAB=\angle PBC =\angle PCA = \phi. Prove that 1sin2ϕ=1sin2A+1sin2B+1sin2C\frac{1}{\sin^2 \phi}=\frac{1}{\sin^2 A} +\frac{1}{\sin^2 B} +\frac{1}{\sin^2 C}