MathDB
RMM 2013 Problem 2

Source:

March 2, 2013
functionfloor functioninductionalgebra unsolvedfunctional equation

Problem Statement

Does there exist a pair (g,h)(g,h) of functions g,h:RRg,h:\mathbb{R}\rightarrow\mathbb{R} such that the only function f:RRf:\mathbb{R}\rightarrow\mathbb{R} satisfying f(g(x))=g(f(x))f(g(x))=g(f(x)) and f(h(x))=h(f(x))f(h(x))=h(f(x)) for all xRx\in\mathbb{R} is identity function f(x)xf(x)\equiv x?