MathDB
5n numbers inequality

Source: China TST 1994, problem 4

May 17, 2005
inequalitieslogarithmsfunctionalgebradomainlinear algebramatrix

Problem Statement

Given 5n5n real numbers ri,si,ti,ui,vi1(1in)r_i, s_i, t_i, u_i, v_i \geq 1 (1 \leq i \leq n), let R=1ni=1nriR = \frac {1}{n} \sum_{i=1}^{n} r_i, S=1ni=1nsiS = \frac {1}{n} \sum_{i=1}^{n} s_i, T=1ni=1ntiT = \frac {1}{n} \sum_{i=1}^{n} t_i, U=1ni=1nuiU = \frac {1}{n} \sum_{i=1}^{n} u_i, V=1ni=1nviV = \frac {1}{n} \sum_{i=1}^{n} v_i. Prove that i=1nrisitiuivi+1risitiuivi1(RSTUV+1RSTUV1)n\prod_{i=1}^{n}\frac {r_i s_i t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \geq \left(\frac {RSTUV +1}{RSTUV - 1}\right)^n.