MathDB
sum 1/ \sqrt[3]{1^2}+\sqrt[3]{1 x 2}+\sqrt[3]{2^2} } + ...>9/2

Source: Rioplatense 1999 L3 P4

September 19, 2022
inequalitiesalgebra

Problem Statement

Prove the following inequality: 1123+123+223+1323+343+423+...+199923+99910003+100023>92 \frac{1}{\sqrt[3]{1^2}+\sqrt[3]{1 \cdot 2}+\sqrt[3]{2^2} }+\frac{1}{\sqrt[3]{3^2}+\sqrt[3]{3 \cdot 4}+\sqrt[3]{4^2} }+...+ \frac{1}{\sqrt[3]{999^2}+\sqrt[3]{999 \cdot 1000}+\sqrt[3]{1000^2} }> \frac{9}{2}
(The member on the left has 500 fractions.)