MathDB
Problems
Contests
National and Regional Contests
India Contests
ISI Entrance Examination
2018 ISI Entrance Examination
8
ISI 2018 #8
ISI 2018 #8
Source: ISI B.Stat / B.Math Entrance Exam 2018
May 13, 2018
isi
Indian Statistical Institute
2018
college contests
linear algebra
Problem Statement
Let
n
⩾
3
n\geqslant 3
n
⩾
3
. Let
A
=
(
(
a
i
j
)
)
1
⩽
i
,
j
⩽
n
A=((a_{ij}))_{1\leqslant i,j\leqslant n}
A
=
((
a
ij
)
)
1
⩽
i
,
j
⩽
n
be an
n
×
n
n\times n
n
×
n
matrix such that
a
i
j
∈
{
−
1
,
1
}
a_{ij}\in\{-1,1\}
a
ij
∈
{
−
1
,
1
}
for all
1
⩽
i
,
j
⩽
n
1\leqslant i,j\leqslant n
1
⩽
i
,
j
⩽
n
. Suppose that
a
k
1
=
1
for all
1
⩽
k
⩽
n
a_{k1}=1~~\text{for all}~1\leqslant k\leqslant n
a
k
1
=
1
for all
1
⩽
k
⩽
n
and
∑
k
=
1
n
a
k
i
a
k
j
=
0
for all
i
≠
j
~~\sum_{k=1}^n a_{ki}a_{kj}=0~~\text{for all}~i\neq j
∑
k
=
1
n
a
ki
a
kj
=
0
for all
i
=
j
. Show that
n
n
n
is a multiple of
4
4
4
.
Back to Problems
View on AoPS