MathDB
CMI Entrance 19#6

Source:

November 1, 2019
logarithmsdefinite integralslebinitz rulecalculus

Problem Statement

(a)(a) Compute - \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \bigg[ \int_{0}^{e^x} \log ( t ) \cos^4 ( t ) \mathrm{d}t \bigg] \end{align*} (b)(b) For x>0x > 0 define F(x)=1xtlog(t)dt.F ( x ) = \int_{1}^{x} t \log ( t ) \mathrm{d}t . \\ \\1.1. Determine the open interval(s) (if any) where F(x)F ( x ) is decreasing and all the open interval(s) (if any) where F(x)F ( x ) is increasing.\\ \\2.2. Determine all the local minima of F(x)F ( x ) (if any) and all the local maxima of F(x)F ( x ) (if any) ..