MathDB
Prove this problem on Banach space and jensen additive mapping

Source: 2009 Jozsef Wildt International Math Competition

April 27, 2020
Functional AnalysisBanach Spacesjensen additive mappingorthogonality space

Problem Statement

Let θ\theta and p(p<1)p(p<1) ) be nonnegative real numbers.
Suppose that f:XYf:X\to Y is mapping with f(0)=0f(0)=0 and 2f(x+y2)f(x)f(y)Yθ(xXp+yXp)\left |\left| 2f\left (\frac{x+y}{2}\right )-f(x)-f(y) \right |\right|_Y \leq \theta\left (\left |\left |x\right |\right |_X^p +\left |\left |y\right |\right |_X^p \right ) for all xx, yZy\in \mathbb{Z} with xyx\perp y where XX is an orthogonality space and YY is a real Banach space.
Prove that there exists a unique orthogonally Jensen additive mapping T:XYT:X\to Y, namely a mapping TT that satisfies the so-called orthogonally Jensen additive functional equation 2f(x+y2)=f(x)+f(y)2f\left (\frac{x+y}{2}\right )=f(x)+f(y)for all xx, yXy\in \mathbb{X} with xyx\perp y, satisfying the property f(x)T(x)Y2pθ22pxXp\left |\left|f(x)-T(x) \right |\right|_Y \leq \frac{2^p\theta}{2-2^p}\left |\left |x\right |\right |_X^p for all xXx\in X