MathDB
INMO 2017 Question 1

Source: 2017 India National Olympiad

January 16, 2017
geometryPlane GeometryINMOindiainradiussquare

Problem Statement

In the given figure, ABCDABCD is a square sheet of paper. It is folded along EFEF such that AA goes to a point AA' different from BB and CC, on the side BCBC and DD goes to DD'. The line ADA'D' cuts CDCD in GG. Show that the inradius of the triangle GCAGCA' is the sum of the inradii of the triangles GDFGD'F and ABEA'BE.
[asy] size(5cm); pair A=(0,0),B=(1,0),C=(1,1),D=(0,1),Ap=(1,0.333),Dp,Ee,F,G; Ee=extension(A,B,(A+Ap)/2,bisectorpoint(A,Ap)); F=extension(C,D,(A+Ap)/2,bisectorpoint(A,Ap)); Dp=reflect(Ee,F)*D; G=extension(C,D,Ap,Dp); D(MP("A",A,W)--MP("E",Ee,S)--MP("B",B,E)--MP("A^{\prime}",Ap,E)--MP("C",C,E)--MP("G",G,NE)--MP("D^{\prime}",Dp,N)--MP("F",F,NNW)--MP("D",D,W)--cycle,black); draw(Ee--Ap--G--F); dot(A);dot(B);dot(C);dot(D);dot(Ap);dot(Dp);dot(Ee);dot(F);dot(G); draw(Ee--F,dashed); [/asy]