MathDB
find the sum of the inverses of the central binomial coefficients

Source: Brazilian Mathematical Olympiad 2023, Level U, Problem 2

October 21, 2023
functionreal analysisConvergencebinomial coefficients

Problem Statement

Let an=1(2nn),n1a_n = \frac{1}{\binom{2n}{n}}, \forall n \leq 1.
a) Show that n=1+anxn\sum\limits_{n=1}^{+\infty}a_nx^n converges for all x(4,4)x \in (-4, 4) and that the function f(x)=n=1+anxnf(x) = \sum\limits_{n=1}^{+\infty}a_nx^n satisfies the differential equation x(x4)f(x)+(x+2)f(x)=xx(x - 4)f'(x) + (x + 2)f(x) = -x.
b) Prove that n=1+1(2nn)=13+2π327\sum\limits_{n=1}^{+\infty}\frac{1}{\binom{2n}{n}} = \frac{1}{3} + \frac{2\pi\sqrt{3}}{27}.