MathDB
Bundeswettbewerb Mathematik 1989 Problem 2.1

Source: Bundeswettbewerb Mathematik 1989 Round 2

September 23, 2022
algebrapolynomialnumber theoryDivisibilitydegree

Problem Statement

Determine the polynomial f(x)=xk+ak1xk1++a1x+a0f(x) = x^k + a_{k-1} x^{k-1}+\cdots +a_1 x +a_0 of smallest degree such that ai{1,0,1}a_i \in \{-1,0,1\} for 0ik10\leq i \leq k-1 and f(n)f(n) is divisible by 3030 for all positive integers nn.