MathDB
Concentric circles in parallelogram

Source: 2024 Israel TST Test 6 P3

March 20, 2024
geometryparallelogramconcentric circlesTSTperpendicular bisectorcircumcircle

Problem Statement

Let ABCDABCD be a parallelogram. Let ω1\omega_1 be the circle passing through DD tangent to ABAB at AA. Let ω2\omega_2 be the circle passing through AA tangent to CDCD at DD. The tangents from BB to ω1\omega_1 touch it at AA and PP. The tangents from CC to ω2\omega_2 touch it at DD and QQ. Lines APAP and DQDQ intersect at XX. The perpendicular bisector of BCBC intersects ADAD at RR.
Show that the circumcircles of triangles PQX\triangle PQX, BCR\triangle BCR are concentric.