MathDB
0713

Source:

April 14, 2008
functionvectorprobabilityinequalitieslinear algebramatrixinduction

Problem Statement

We are given the finite sets X X, A1 A_1, A2 A_2, \dots, A_{n \minus{} 1} and the functions fi: XAi f_i: \ X\rightarrow A_i. A vector (x1,x2,,xn)Xn (x_1,x_2,\dots,x_n)\in X^n is called nice, if f_i(x_i) \equal{} f_i(x_{i \plus{} 1}), for each i \equal{} 1,2,\dots,n \minus{} 1. Prove that the number of nice vectors is at least \frac {|X|^n}{\prod\limits_{i \equal{} 1}^{n \minus{} 1} |A_i|}.