MathDB
Maximum Value of Function in Range

Source: 1989 IrMO Paper 1 Problem 3

September 29, 2017
functionalgebra

Problem Statement

A function ff is defined on the natural numbers N\mathbb{N} and satisfies the following rules:
(a) f(1)=1f(1)=1;
(b) f(2n)=f(n)f(2n)=f(n) and f(2n+1)=f(2n)+1f(2n+1)=f(2n)+1 for all nNn\in \mathbb{N}.
Calculate the maximum value mm of the set {f(n):nN,1n1989}\{f(n):n\in \mathbb{N}, 1\le n\le 1989\}, and determine the number of natural numbers nn, with 1n19891\le n\le 1989, that satisfy the equation f(n)=mf(n)=m.