MathDB
[sum(x-y)^7-(x-y)(y-z)(z-x)((x-y)^4+(y-z)^4+(z-x)^4)/sum(x-y)^5 >=3

Source: 41st Austrian Mathematical Olympiad National Competition (Final Round, part 2) 2nd June 2010 p1

September 5, 2019
algebrainequalities

Problem Statement

Show that (xy)7+(yz)7+(zx)7(xy)(yz)(zx)((xy)4+(yz)4+(zx)4)(xy)5+(yz)5+(zx)53\frac{(x - y)^7 + (y - z)^7 + (z - x)^7 - (x - y)(y - z)(z - x) ((x - y)^4 + (y - z)^4 + (z - x)^4)} {(x - y)^5 + (y - z)^5 + (z - x)^5} \ge 3 holds for all triples of distinct integers x,y,zx, y, z. When does equality hold?