MathDB
Putnam 1966 A2

Source:

April 6, 2022
college contests

Problem Statement

Let a,b,ca,b,c be the lengths of the sides of a triangle, let p=(a+b+c)/2p=(a+b+c)/2, and rr be the radius of the inscribed circle. Show that 1(pa)2+1(pb)2+1(pc)21r2.\frac{1}{(p-a)^2}+ \frac{1}{(p-b)^2}+\frac{1}{(p-c)^2} \geq \frac{1}{r^2}.