MathDB
x+y+z=3

Source: Iranian National Olympiad (3rd Round) 2008

August 30, 2008
inequalitiesinequalities proposedCauchy Inequality

Problem Statement

Let x,y,z\in\mathbb R^{\plus{}} and x\plus{}y\plus{}z\equal{}3. Prove that: \frac{x^3}{y^3\plus{}8}\plus{}\frac{y^3}{z^3\plus{}8}\plus{}\frac{z^3}{x^3\plus{}8}\geq\frac19\plus{}\frac2{27}(xy\plus{}xz\plus{}yz)