MathDB
Functional equation 007

Source: 2017 Taiwan TST Round 2, Day 3, Problem 1

April 19, 2017
algebrafunctional equation

Problem Statement

Determine all surjective functions f:Z→Z f: \mathbb{Z} \to \mathbb{Z} such that f(xyz+xf(y)+yf(z)+zf(x))=f(x)f(y)f(z) f\left(xyz+xf\left(y\right)+yf\left(z\right)+zf\left(x\right)\right)=f\left(x\right)f\left(y\right)f\left(z\right) for all x,y,z x,y,z in Z \mathbb{Z}