MathDB
Inequality about existence of permutation

Source: BMO SL 2023 A2

May 3, 2024
algebra

Problem Statement

Let a,b,c,da, b, c, d be non-negative reals such that 1a+3+1b+3+1c+3+1d+3=1\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1. Show that there exists a permutation (x1,x2,x3,x4)(x_1, x_2, x_3, x_4) of (a,b,c,d)(a, b, c, d), such that x1x2+x2x3+x3x4+x4x14.x_1x_2+x_2x_3+x_3x_4+x_4x_1 \geq 4.