Given n numbers a1,a2,...,an (n≥3) where ai∈{0,1} for all i=1,2.,,,.n. Consider n following n-tuples S1S2Sn=(a1,a2,...,an−1,an)=(a2,a3,...,an,a1)⋮=(an,a1,...,an−2,an−1). For each tuple r=(b1,b2,...,bn), let ω(r)=b1⋅2n−1+b2⋅2n−2+⋯+bn. Assume that the numbers ω(S1),ω(S2),...,ω(Sn) receive exactly k different values.a) Prove that k∣n and \frac{2^n-1}{2^k-1}|\omega (S_i) \forall i=1,2,...,n.b) Let Mm=i=1,nmaxω(Si)=i=1,nminω(Si). Prove that M−m≥2k−1(2n−1)(2k−1−1).