MathDB
Polynomial

Source: APMO 1993

March 11, 2006
algebrapolynomialinequalitiesratioalgebra unsolved

Problem Statement

Let \begin{eqnarray*} f(x) & = & a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \ \ \mbox{and} \\ g(x) & = & c_{n+1} x^{n+1} + c_n x^n + \cdots + c_0 \end{eqnarray*} be non-zero polynomials with real coefficients such that g(x)=(x+r)f(x)g(x) = (x+r)f(x) for some real number rr. If a=max(an,,a0)a = \max(|a_n|, \ldots, |a_0|) and c=max(cn+1,,c0)c = \max(|c_{n+1}|, \ldots, |c_0|), prove that acn+1\frac{a}{c} \leq n+1.