MathDB
Problems
Contests
National and Regional Contests
India Contests
Regional Mathematical Olympiad
2013 India Regional Mathematical Olympiad
5
Indian RMO- Paper 2
Indian RMO- Paper 2
Source: Problem 5
December 11, 2013
limit
inequalities
Problem Statement
Let
n
≥
3
n \ge 3
n
≥
3
be a natural number and let
P
P
P
be a polygon with
n
n
n
sides. Let
a
1
,
a
2
,
⋯
,
a
n
a_1,a_2,\cdots, a_n
a
1
,
a
2
,
⋯
,
a
n
be the lengths of sides of
P
P
P
and let
p
p
p
be its perimeter. Prove that
a
1
p
−
a
1
+
a
2
p
−
a
2
+
⋯
+
a
n
p
−
a
n
<
2
\frac{a_1}{p-a_1}+\frac{a_2}{p-a_2}+\cdots + \frac{a_n}{p-a_n} < 2
p
−
a
1
a
1
+
p
−
a
2
a
2
+
⋯
+
p
−
a
n
a
n
<
2
Back to Problems
View on AoPS