MathDB
Find the number of positive integers

Source: IMO Shortlist 1994, N4

October 22, 2005
number theoryIMO ShortlistSequencerecurrence relation

Problem Statement

Define the sequences an,bn,cn a_n, b_n, c_n as follows. a_0 \equal{} k, b_0 \equal{} 4, c_0 \equal{} 1. If an a_n is even then a_{n \plus{} 1} \equal{} \frac {a_n}{2}, b_{n \plus{} 1} \equal{} 2b_n, c_{n \plus{} 1} \equal{} c_n. If an a_n is odd, then a_{n \plus{} 1} \equal{} a_n \minus{} \frac {b_n}{2} \minus{} c_n, b_{n \plus{} 1} \equal{} b_n, c_{n \plus{} 1} \equal{} b_n \plus{} c_n. Find the number of positive integers k<1995 k < 1995 such that some a_n \equal{} 0.