MathDB
Problems
Contests
Undergraduate contests
Jozsef Wildt International Math Competition
2019 Jozsef Wildt International Math Competition
W. 62
Prove this integral inequality involving pi
Prove this integral inequality involving pi
Source: 2019 Jozsef Wildt International Math Competition
May 20, 2020
integration
inequalities
calculus
Problem Statement
Prove that
∫
0
π
2
(
cos
x
)
1
+
2
n
+
1
d
x
≤
2
n
−
1
n
!
π
2
(
2
n
+
1
)
!
\int \limits_0^{\frac{\pi}{2}}(\cos x)^{1+\sqrt{2n+1}}dx\leq \frac{2^{n-1}n!\sqrt{\pi}}{\sqrt{2(2n+1)!}}
0
∫
2
π
(
cos
x
)
1
+
2
n
+
1
d
x
≤
2
(
2
n
+
1
)!
2
n
−
1
n
!
π
for all
n
∈
N
∗
n\in \mathbb{N}^*
n
∈
N
∗
Back to Problems
View on AoPS