MathDB
B.Math 2008-fibonacci

Source: 10+2

April 16, 2012
algebra proposedalgebra

Problem Statement

Let (nk)\dbinom{n}{k} denote the binomial coefficient n!k!(nk)!\frac{n!}{k!(n-k)!} , and FmF_m be the mthm^{th} Fibonacci number given by F1=F2=1F_1=F_2=1 and Fm+2=Fm+Fm+1F_{m+2}=F_m+F_{m+1} for all m1m\geq 1. Show that
(nk)=Fm+1\sum \dbinom{n}{k}=F_{m+1} for all m1m\geq 1 . Here the above sum is over all pairs of integers nk0n\geq k\geq 0 with n+k=mn+k=m .