MathDB
Problems
Contests
National and Regional Contests
India Contests
ISI B.Math Entrance Exam
2008 ISI B.Math Entrance Exam
6
B.Math 2008-fibonacci
B.Math 2008-fibonacci
Source: 10+2
April 16, 2012
algebra proposed
algebra
Problem Statement
Let
(
n
k
)
\dbinom{n}{k}
(
k
n
)
denote the binomial coefficient
n
!
k
!
(
n
−
k
)
!
\frac{n!}{k!(n-k)!}
k
!
(
n
−
k
)!
n
!
, and
F
m
F_m
F
m
be the
m
t
h
m^{th}
m
t
h
Fibonacci number given by
F
1
=
F
2
=
1
F_1=F_2=1
F
1
=
F
2
=
1
and
F
m
+
2
=
F
m
+
F
m
+
1
F_{m+2}=F_m+F_{m+1}
F
m
+
2
=
F
m
+
F
m
+
1
for all
m
≥
1
m\geq 1
m
≥
1
. Show that
∑
(
n
k
)
=
F
m
+
1
\sum \dbinom{n}{k}=F_{m+1}
∑
(
k
n
)
=
F
m
+
1
for all
m
≥
1
m\geq 1
m
≥
1
. Here the above sum is over all pairs of integers
n
≥
k
≥
0
n\geq k\geq 0
n
≥
k
≥
0
with
n
+
k
=
m
n+k=m
n
+
k
=
m
.
Back to Problems
View on AoPS