MathDB
BIjective map on {1,2,...,17}

Source: Chinese Mathematical Olympiad 1997 Problem 5

August 26, 2013
modular arithmeticnumber theory unsolvednumber theory

Problem Statement

Let A={1,2,3,,17}A=\{1,2,3,\cdots ,17\}. A mapping f:AAf:A\rightarrow A is defined as follows: f[1](x)=f(x),f[k+1](x)=f(f[k](x))f^{[1]}(x)=f(x), f^{[k+1]}(x)=f(f^{[k]}(x)) for kNk\in\mathbb{N}. Suppose that ff is bijective and that there exists a natural number MM such that: i) when m<Mm<M and 1i161\le i\le 16, we have f[m](i+1)f[m](i)±1(mod17)f^{[m]}(i+1)- f^{[m]}(i) \not=\pm 1\pmod{17} and f[m](1)f[m](17)±1(mod17)f^{[m]}(1)- f^{[m]}(17) \not=\pm 1\pmod{17}; ii) when 1i161\le i\le 16, we have f[M](i+1)f[M](i)=±1(mod17)f^{[M]}(i+1)- f^{[M]}(i)=\pm 1 \pmod{17} and f[M](1)f[M](17)=±1(mod17)f^{[M]}(1)- f^{[M]}(17)=\pm 1\pmod{17}. Find the maximal value of MM.