MathDB
Cyclic inequality with xyz=1

Source: Baltic Way 2003 , problem 3

October 7, 2005
inequalitiesinequalities proposed

Problem Statement

Let xx, yy and zz be positive real numbers such that xyz=1xyz = 1. Prove that (1+x)(1+y)(1+z)2(1+xz3+yx3+zy3).\left(1+x\right)\left(1+y\right)\left(1+z\right)\geq 2\left(1+\sqrt[3]{\frac{x}{z}}+\sqrt[3]{\frac{y}{x}}+\sqrt[3]{\frac{z}{y}}\right).