MathDB
last digit of divisor

Source: 30-th Vietnamese Mathematical Olympiad 1992

February 17, 2007
number theory unsolvednumber theory

Problem Statement

For any positive integer aa, denote f(a)={bNbaf(a)=|\{b\in\mathbb{N}| b|a and\text{and} bmod10{1,9}}b\mod{10}\in\{1,9\}\}| and g(a)={bNbag(a)=|\{b\in\mathbb{N}| b|a and\text{and} bmod10{3,7}}b\mod{10}\in\{3,7\}\}|. Prove that f(a)g(a)aNf(a)\geq g(a)\forall a\in\mathbb{N}.