MathDB
Inequality + Sequence

Source: Junior Olympiad of Malaysia Shortlist 2015 A9

July 17, 2015
inequalities

Problem Statement

Let 2n2n positive reals a1,a2,,an,b1,b2,,bna_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n satisfy ai+12aia_{i+1}\ge 2a_i and bi+1bib_{i+1} \le b_i for 1in11\le i\le n-1. Find the least constant CC that satisfy: i=1naibiC(a1+a2++an)b1+b2++bn\displaystyle \sum^{n}_{i=1}{\frac{a_i}{b_i}} \ge \displaystyle \frac{C(a_1+a_2+\cdots+a_n)}{b_1+b_2+\cdots+b_n} and determine all equality case with that constant CC.