MathDB
good functions

Source: 2012 China TST Test 2 p6

March 20, 2012
functionmodular arithmeticalgebrafunctional equationnumber theory

Problem Statement

Given an integer n2n\ge 2, a function f:Z{1,2,,n}f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\} is called good, if for any integer k,1kn1k,1\le k\le n-1 there exists an integer j(k)j(k) such that for every integer mm we have f(m+j(k))f(m+k)f(m)(modn+1).f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. Find the number of good functions.