MathDB
Integral inequality

Source: ISI Entrance 2014, P7

May 11, 2014
calculusintegrationinequalitiesrearrangement inequalityreal analysisIntegral inequality

Problem Statement

Let f:[0,)Rf: [0,\infty)\to \mathbb{R} a non-decreasing function. Then show this inequality holds for all x,y,zx,y,z such that 0x<y<z0\le x<y<z. \begin{align*} & (z-x)\int_{y}^{z}f(u)\,\mathrm{du}\ge (z-y)\int_{x}^{z}f(u)\,\mathrm{du} \end{align*}